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Abstract
In this study, we consider the Least squares Monte Carlo method introduced by Longstaff and Schwartz
(2001) to value American put option. The particularity of this method is the approximation of the
continuation value using Least squares method, unlike the Monte Carlo simulation introduced by Tilley
(1993) which the continuation value is estimated for each group of simulated stock price ordered from
the minimum to the maximum. Numerical experiments are performed to compare the Least squares
Monte Carlo and the Monte Carlo method, and the efficiency of the method is considered.

Keywords: Least Squares Method, Monte Carlo Method, Option Pricing Theory, American options,
Least Squares Monte Carlo Method.
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1. Introduction

1.1 Background

Options pricing has played a crucial role and empowered activities of banks and financial market. Differ-
ent style options have been proposed; among all options, American and European options are the most
common. Options are financial instruments used on exchanges and financial institutions. An option is
defined as a type of contract that gives to the owner the right, but not the obligation to buy or sell an
underlying asset at a fixed date and fixed price in the contract (Hull, 2008).

Valuing options is a major area of interest within financial mathematics (Kazeem, 2014), and many
corporate responsibility can be expressed in terms of options (Boyle, 1977). The difference between
the American options and European options is that the first one can be exercised before the expiration
date whereas the second one can only be exercised at the expiry date. American options have a pivotal
role on exchanges (Hull, 2008), their valuation of optimal exercise remains one of the most challenging
problems in derivatives, particularly when more than one factor affects the option value (Longstaff and
Schwartz, 2001).

The Black-Scholes equation first suggested by Black and Scholes (1973) provides an analytical solution
only for European-style options. Different studies have been done in order to find the American option
value by using different techniques. In order to solve American options, Cox, Ross & Rubinstein (1979)
introduced the Binomial model for pricing options. However numerical methods such as Finite Difference
method were suggested to price American options by approximating Black-Scholes equation (Stentoft,
2004). But for options whose price depends on multiple stochastic factors such as interest rate, and
volatility, and with complicated features, these techniques become complex to evaluate.

Therefore, complex models that are difficult to analyse can be approximated by using simulation tech-
niques such as Monte Carlo methods. It was first shown by Boyle that the Monte Carlo simulation can
be used for pricing American options (Boyle, 1977). The Monte Carlo approach is a helpful alternative
to the binomial method and presents many advantages as a framework to value risk management and
optimally exercise American options (Longstaff and Schwartz, 2001). Also the technique is flexible and
assumes variables follow stochastic processes. However, Monte Carlo method is relatively slow.

Longstaff and Schwartz (2001) introduced a new approach known as the Least squares Monte Carlo
method to evaluate American options, that combines Monte Carlo simulation and Least squares regres-
sion in American option value calculation. Several analysis have been done, to prove the convergence of
the Least square Monte Carlo algorithm to the true value (Clément et al., 2002), (Glasserman, 2013).
Huang and Huang (2009), used different polynomial families to approximate the continuation value
and compare it to an existing options calculator. Svensson (2004), used simple polynomials as basis
functions and compared the results to a finite difference method.

1.2 Objective

In this study, we are going to evaluate American put option by using three different methods, the
Binomial method, the Monte Carlo simulation introduced and the Least Squares Monte Carlo method
(LSMC).
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The Least squares Monte Carlo method proceeds in two steps, the Least squares method to approximate
the conditional expectation value and the Monte Carlo methods to simulate the multiple stock price
paths and to get the mean option value for all paths. The next Chapter presents basic notions in finances
and option theory that will be used all throughout our study. The third Chapter presents principles of
Monte Carlo methods and the Least squares method. The fourth describes pricing options methods
such as the Binomial method, the Monte Carlo simulation and Least Squares Monte Carlo method,
which is the main subject of our study. Thus, we will compare the numerical results obtained by using
the methods enumerated above.



2. Basic Notions in Finance and Option Theory
In this Chapter, we introduce important basic definitions, concepts, and notations used in Probabil-
ity Theory, Stochastic Processes, and Options Theory. All these terms will be important to better
understand the rest of our study.

2.1 Probability Theory

2.1.1 Definition: Probability measure. (Shreve, 2004) Let Ω be a nonempty set called a sample
space and E an event. A probability measure P is defined as a function which satisfies the following
assumptions

- A probability value of an event belongs in the interval [0, 1],

- The probability of the nonempty set is equal to one (P (Ω) = 1),

- The probability of an impossible event is equal to zero (P (∅) = 0),

- If a sequence of events As are disjoint sets, then we have

P (
∞⋃
s=1

As) =
∞∑
s=1

P (As).

2.1.2 Definition: σ− algebra . (Shreve, 2004) Let Ω be a set with finitely many elements. A σ-algebra
denoted by F is a collection of subsets of Ω which satisfy the following conditions

- The impossible event ∅, belongs in the collection of subset,

- If an event A is in the σ-algebra then its complement (Ac) is also in σ-algebra,

- If a sequence of events As are in a σ-algebra then their union,
⋃∞
s=1As are in the σ-algebra.

2.1.3 Definition: Filtration. (Shreve, 2004) Let Fn be a succession of sub σ−algebras such that
F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ F . A filtration is define by

F := (Fn)n∈N.

2.1.4 Definition: Probability space . (Shreve, 2004) The triple space (Ω,F , P ) is a probability space
composed of the following elements:

(i) A non empty set Ω, which contains all possible results of a random experiment,

(ii) A σ-algebra F such that F ∈ Ω,

(iii) A probability measure P defined on the interval [0, 1].

2.1.5 Definition: Expectation value. (Shreve, 2004) Let X be a random variable with the possible
values xs occurring with probabilities ps.

E[X] =
n∑
s=1

xsps

where E[X] is an expectation value of X.

3
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2.1.6 Definition: Conditional expectation. (Shreve, 2004) Let F be a σ-algebra having a sub σ-
algebra H. Let X ∈ F a random variable such that E[|X|] < ∞; ∃ a random variable Y = E(X|H)
such that

- Y is in H

- For every set A ∈ H, we have ∫
A
Y dP =

∫
A
XdP.

This means considering the information in H, Y is a good predictor of X. The option value will
be expressed as a conditional expected value before being estimated. A few conditional expectation
properties are demonstrated in (Shreve, 2004).

2.1.7 Definition: Martingale. (Bjork, 2009) Let Fn be the information available at time n and
M0,M1, . . . ,Mn be a process, which is stochastic. The process {Mn : n ≥ 1} is said to be a martingale
if

E[|Mn|] <∞
E(Mn+1|Fn) = Mn, for each n ≥ 1.

2.1.8 Definition: Equivalent Martingale measure. (Bjork, 2009) An equivalent martingale measure
Q for a market model

- Is a measure of probability,

- The normalized asset price process, Zit is martingale under Q.

Zit = Sit
S1
t

where Sit is an asset price, S1
t the asset fixed as the numeraire asset, for i = 1, . . . n and t ∈ [0, T ].

2.1.9 Definition: Arbitrage. Zastawniak and Capinski (2003) Arbitrage is a practice that aim to take
advantage of the price difference between two or more markets. It could be defined as a portfolio of
values γ0, . . . , γs satisfying the property

- γ0 = 0 (no initial investment)

- P (γs ≥ 0) = 1 (always win)

- P (γs > 0) > 0 (making a positive return on investment)

where P is a probability measure. The “no arbitrage” hypothesis is used to compute a unique risk
neutral price for derivatives. It is under this assumption that an American option will be evaluated.
However, we have an asset price’s fundamental theorem below.

2.1.10 Theorem. (Shreve, 2004) The existence of risk-neutral measure implies a no arbitrage.

For the proof see (Shreve, 2004).
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2.1.11 Definition: Discount factor process . 1 A discount factor process is the overall measure of
uncertain future market expectations, that could be defined by

D(t) = e(−
∫ t

0 r(s)ds)

where r(t) is an interest rate, t ∈ [0, T ] an interval of time.

2.1.12 Definition: Risk neutral measure. 2 A risk neutral measure is a measure equivalent to a
martingale measure for which the discounted stock price denoted by D(t)S(t) is a martingale. The
measure is useful for price derivative securities and its existence implies there is no arbitrage. Also, the
uniqueness of the measure implies every derivative can be hedged.

2.2 Stochastic Process

2.2.1 Definition: Stochastic Process. (Shreve, 2004) Let (Ω,F , P ) be a probability space. A stochas-
tic process denoted by {Xt : t ∈ T} is a collection of random variables, where T ⊂ R+ = [0,∞).

2.2.2 Definition: Stochastic Differential Equation. (Bjork, 2009) The complete theory used to
model asset prices at continuous times is a diffusion’s process and a stochastic differential equation. X
is said to be a diffusion if its local dynamics can be approximated by a stochastic differential equation
(SDE)

X(t+ ∆t)−X(t) = µ(t,X(t))∆t+ σ(t,X(t))Z(t) (2.2.1)

where Z(t) is a vector of independent and identically distributed components, µ and σ are deterministic
functions respectively called drift and diffusion terms over the interval [t, t + ∆t]. The two terms of
Equation (2.2.1) represent

- µ(t,X(t)) the average rate at which the asset increases,

- σ(t,X(t)) the measure of dispersion of asses returns.

A stock price follows a random walk, which is a stochastic process. Over time the price changes with a
particular probability by going up or down.

2.2.3 Definition: Markov process. (Shreve, 2004) A Markov process is a specific stochastic process
where only the value in the moment can predicted the future, not the path followed in the past (Hull,
2008).

We assume a filtration F = {Ft : t ∈ T}. We suppose X = {Xt : t ∈ T} is a stochastic process on a
space of probability. X represents a Markov process if there exists K, a state space such that Xt ∈ K
and respects the property below

E[f(Xk+t)|Fk] = E[f(Xk+t)|Xk]

where k, t ∈ T and f : K → R is a function.

Throughout this study, the stock price will satisfy the Markov property and we will use this property to
compute the continuation value.

1Adopted from, http://www.math.cmu.edu/~gautam/sj/teaching/2016-17/944-scalc-finance1/pdfs/ch4-rnm.pdf, Ac-
cessed on 4 Mai 2019

2Adopted from, http://www.math.cmu.edu/~gautam/sj/teaching/2016-17/944-scalc-finance1/pdfs/ch4-rnm.pdf, Ac-
cessed on 4 Mai 2019

http://www.math.cmu.edu/~gautam/sj/teaching/2016-17/944-scalc-finance1/pdfs/ch4-rnm.pdf
http://www.math.cmu.edu/~gautam/sj/teaching/2016-17/944-scalc-finance1/pdfs/ch4-rnm.pdf
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2.2.4 Brownian motion . (Glasserman, 2013) A Brownian motion is a stochastic continuous process.
Let {W (t)} be a stochastic process on the interval 0 ≤ t ≤ T . {W (t)} process is said to be a Brownian
(Wiener) motion if the assumptions below are fulfilled

(i) W (0) = 0.

(ii) The increment W (t) is continuous.

(iii) The process has independent increments, i.e, for 0 ≤ s < t ≤ u < v,W (t)−W (s) and W (v)−
W (u) are independents.

(iv) For 0 ≤ u < t ≤ T,W (t)−W (u) ∼ N (0, t− u).

If the assumptions (i) and (iv) are fulfilled then W (t) is a normally distributed variable, which could be
written

W (t) ∼ N (0, t), 0 < t ≤ T.

The Brownian motion is defined on a continuous interval of time, it will be precisely modelled if the
time is discretized in steps by constructing a random walk.

2.2.5 Random walk construction . (Glasserman, 2013) The Brownian motion simulation is used to
generate W (t1), . . . ,W (tn) values on the interval 0 < t1 < · · · < tn. Let Z1, . . . , Zn be a standard
normal variable. Using the Brownian motion assumptions and setting t0 = 0, the values could be
generated by

W (tj+1) = W (tj) +
√
tj+1 − tjZj+1, j = 0, 1, . . . , n− 1. (2.2.2)

A random walk simulated in 1000 times step using Equation (2.2.2) is illustrated in Figure 2.1 below

Figure 2.1: Random walk illustration.
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In finance the assumptions presume that stock price variations in the market are the random events.
They are independent and have the same probability distribution, therefore stock prices follow a random
walk (Glasserman, 2013). Notice that the values of a Brownian motion can be negative, so it could not
be considered as a model for an asset price, which will always be non-negative. For this reason, let us
introduce geometric Brownian motion.

2.2.6 Geometric Brownian Motion. (Bjork, 2009) A geometric Brownian motion (GBM) is a model
for the variation in a stochastic process, relative to value of X. Consider {Xt : t ∈ T} to be a process,
Xt follows a GBM if the stochastic differential equation (SDE) below is satisfied

dX(t) = µXdt+ σXdW (t) (2.2.3)

where µ, σ are drift and diffusion terms and W (t) is a Brownian motion. To solve Equation (2.2.3)
some calculations are needed. Particularly we will need Itô’s lemma (Bjork, 2009).

2.2.7 Itô’s Lemma. (Bjork, 2009) Suppose {Xt} is a process satisfying the Equation (2.2.3). Consider
h(X, t) to be a twice differentiable function. Then h’s SDE is given by

dh(X(t), t) =
(
∂h

∂t
+ µ

∂h

∂X
+ σ2

2
∂2h

∂X2

)
dt+ σ

∂h

∂X
dW (t). (2.2.4)

Using Itô’s Lemma from Equation (2.2.3) we get

dh(X, t) =
(
∂h

∂t
+ µX

∂h

∂X
+ 1

2σ
2X2 ∂

2h

∂X2

)
dt+ σX

∂h

∂X
dW (t). (2.2.5)

Assuming the initial value equal h(X, t) = ln(X, t) and ln(X(0)) we obtain (Glasserman, 2013).

∂h

∂t
= 0, ∂h

∂X
= 1
X
,

∂2h

∂X2 = − 1
X2 . (2.2.6)

By substituting the Equation (2.2.6) into (2.2.5) we get

dln(X) = (µ− 1
2σ

2) + σdW (t)∫ t1

t0
dln(X) =

∫ t1

t0
(µ− 1

2σ
2) +

∫ t1

t0
σdW (t)

ln(X(t1))− ln(X(t0)) = (µ− 1
2σ

2)(t1 − t0) + σ(W (t1)−W (t0))

ln(X(t1)) = (µ− 1
2σ

2)(t1 − t0) + σ(W (t1)−W (t0)) + ln(X(t0)).

We can exponentiated each side to get

X(t1) = X(t0)e((µ− 1
2σ

2)(t1−t0)+σ(W (t1)−W (t0)))

Assigning t0 = 0 and t1 = t we get

X(t) = X(0)e((µ− 1
2σ

2)t+σW (t)). (2.2.7)

By Brownian motion properties and using random walk construction, we can simulate X(t) values by
the recursive formula {

X(ti) = X(ti−1)e((µ− 1
2σ

2)(ti−ti−1)+σ√ti−ti−1Zi)

X(t0) = X0
(2.2.8)
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for 0 = t0 < t1 < · · · < tn, i = 0, 1, . . . , n− 1 and independent standard normals Z1, . . . Zn ∼ N (0, 1).
GBM is a fundamental model of the value of a financial asset (Glasserman, 2013). Figure 2.2 shows
ten simulated GBM paths, given µ = 0.06, σ = 0.2 at initial time X0 = 90 in 300 time steps.

Figure 2.2: Simulation of GBM.

2.3 Option Theory

An option is an agreement between two parties, within specified conditions, that gives the owner the
right, but not an obligation to buy or to sell an underlying asset at a specified price (Hull, 2008). The
underlying asset could be a stock, property, change or other financial instrument. In this study, the
underlying will be referred to as a stock. An option is not an obligation, the owner may choose either
to exercise his right, or let it expire (Hull, 2008).

Options are particular derivatives, that is to say, financial instruments which promise some payment in
the future and their derived values are from the underlying stocks (Kazeem, 2014). Options are a good
instrument for investment risk management, also called hedging, and whenever they are applied to buy
or sell shares, we will say that they are exercised.

The price in the agreement is called the strike price or exercise price, it will be denoted by K and the
time when the option will be exercised is called expiration date, exercise time or maturity, it will be
denoted by T . In return for granting the option, the buyer should be paid an amount called a premium,
and if the option will not be exercised then the seller’s profit will be this premium. This is the main
difference between an option and a forward contract, which the buyer has the obligation to exercise
(Zastawniak and Capinski, 2003).

There exist two principal types of options (Zastawniak and Capinski, 2003):

- Call option where the holder has the right to buy the underlying asset for a specified price K.

- Put option where the holder has the right to sell the underlying asset for a specified price K.

An option is determined by its pay-off which is defined by max(S(T )−K, 0) for a call and max(K −
S(T ), 0) for a put, where S(T ) represents the stock price at time T . This explains why an investor
purchasing an option could not lose money.
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Options can have different types of exercise time. An European option can only be exercised at the
expiry time. An American option could be exercised at any time before or at expiry date. Therefore we
can have a European call or put options, American call or put options. There is also Bermudan options,
exercised at a predetermined date before the expiration date, and Asian options, exercised when the
pay-off reaches a value that belongs on the mean stock price during a defined time period.

American and European are the most used options. Also, American style-options are the most traded
on exchanges. Our study will focus on American style-options, because they can exercised at any time.

The advantage of American style-options is that the holder has a choice of when to exercise, unlike the
European options for which the holder should wait until the end to the exercise. Many factors affect
the price of options apart from the exercise price and expiration date such as

- The stock price at present time S0, called the underlying stock price;

- The risk-free interest rate;

- The volatility;

- The dividend expected during the life of the options. But in our study, we are considered the
stock that does not pay dividends.

But it is the market value and the exercise price that have the most influence in the computing of an
option’s value.

The volatility of the stock price is a measure of our uncertainty about the returns provided by the stock
(Hull, 2008). Usually, for a stock, it varies between 15% and 60%. When the return is expressed as a
continuous variable, the volatility can be seen as the standard deviation of the return supplied in one
year by the stock. Thus, increase of the volatility affect positively the probability that the stock will be
well. (Hull, 2008).

2.3.1 Definition: Risk-free interest rate. (Hull, 2008) The risk-free interest rate is the theoretical
return rate expected by an investor from their investment without risk. If the interest rate increases in
the economy then the expected return from the stock by investors will increase.

Investors who decide to exercise an option should know what they are paying for, risk and pay-off. Thus,
we define the two concepts below.

2.3.2 Definition: Intrinsic value . (Zastawniak and Capinski, 2003) The intrinsic value is defined as
the current worth of the option. It is given by (S(t) −K)+ if the option is a call and (K − S(t))+ if
the option is a put at time t < T , where (Z)+ = max(Z, 0).

2.3.3 Definition: Time value option. (Zastawniak and Capinski, 2003) The time value describes the
possibility that the option could increase in value prior to its expiry date.

A put option is said to be in the money (ITM), which means profitable when the current price is less
than the exercise price, at the money (ATM) when the current price and the exercise are equal, out of
the money (OTM) when the current price is greater than the exercise price. Unlike for a call option,
which is ITM when the current price is greater than exercise price, and it is OTM when the current
price is less than the exercise price.

Let K be the exercise price and S(t) be the current stock price at time t. The time value can be
summarised in the table below
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Put option Call option
In the money S(t) < K S(t) > K
At the money S(t) = K S(t) = K
Out the money S(t) > K S(t) < K

Table 2.1: Time value option

Thus, the intrinsic value will be zero when the options are out or at the money. For American options,
it will be better to exercise when they are in the money than when they are out of the money. We can
illustrated by Figure 2.3 below

(a) Put option (b) Call option

Figure 2.3: Intrinsic option value graph with exercise price K = 110

As we can see Figure 2.3 above displays the way in which the pay-off of an American call and put varies
with S(t). For a put option, with interest rate r > 0, it is optimal to exercise immediately when the
stock price is less than the option’s exercise price K. In the case of a call, it is better to exercise when
the stock price is greater than option’s exercise price K.

2.3.4 Definition: Hedging. (Zastawniak and Capinski, 2003) Hedging is a strategy used by an investor
to minimize the risk of their investment which leads to lower profit. Thus the hedgers use options to
lower the risk caused by potential future movements in an uncertain market. Next, we give the common
model used to price options.

2.3.5 Option Pricing Model. In the stock market, the common model used to get the fair value of an
option in continuous price process is the Black-Scholes model, which makes the following assumptions
about the market (Black and Scholes, 1973)

- A stock price is modelled as a GBM3 given by

dS(t) = rS(t)dt+ σS(t)dW (t) (2.3.1)

where r is the risk free interest rate and σ the volatility, both constant (Glasserman, 2013).

- A stock price has no dividend during the life of an option.

- Market movements could not be predicted.

- No transaction costs on the specific stock.
3GBM: Geometric Brownian motion
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- The returns are normally distributed.

Thus, The Black-Scholes equation for European option price (Black and Scholes, 1973) is defined as

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂2S2 + rS
∂V

∂S
− rV = 0 (2.3.2)

where

- V = V (S, t) is the option value at time t,

- S = S(t) is the current stock price,

- r is the risk-free interest rate,

- σ is the volatility,

- t is the time in the interval [0, T ].

The boundary condition of Equation 2.3.2 is that at the maturity date, the option value is equal to
pay-off. This means

V (S, T ) = max(K − ST , 0). (2.3.3)

Equation (2.3.3) is the option at maturity, and corresponds to the value of the European put option.
However, analytical solution of Equation 2.3.2 is given by

V (S, t) = Ke−r(T−t)N (−d2)− SN (−d1) (2.3.4)

where

d1 =
ln ( SK ) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

and N (.) represents the standard normal cumulative distribution function, σ is the standard deviation on
the stock returns, t is the current time and T is the maturity time (Black and Scholes, 1973). Equation
2.3.4 is the value of a European option at time t.

2.3.6 American Options . The American options give the owner the right to exercise at any time up
until the expiration date. Given T the maturity and t = 0 the present time, h will represent the pay-off
function. To be able to understand, a stock price at maturity will be denoted S(T ), a stock price at
current time t < T by S(t) and K the exercise price.

We will consider a put option, which gives the holder the right to sell the stock at a fixed exercise price
K at a future time. In this case the stock price S(T ) < K. At the end of the contract the holder
decides to exercise if it is in the money, otherwise he lets it expire.

Unlike the European option, the American holder has the choice to exercise before the final time T or
wait until maturity. The pay-off of the option at time T is the intrinsic value given by

(K − S(T ))+ = max(K − S(T ), 0). (2.3.5)

Knowing the pay-off at maturity, the value of the option at the present time, denoted by V (S, 0) is
defined as the expectation discounted pay-off, given by

V (S, 0) = EQ[e−rT (K − S(T ))+] (2.3.6)
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where EQ[ . ] is the conditional expectation taken under the risk-neutral pricing, Q a martingale measure,
e−rT is the discount factor and r the risk-free interest rate. We assume r is discrete and constant
(Longstaff and Schwartz, 2001). The expectation value defined above will be significant if we know the
stock price distribution at maturity.

Recall that the Black-Scholes model assumes that the stock follows a GBM with mean µ and standard
deviation σ2 in continuous time (Barola, 2014). This means, the stock price has a log normal distribution
(Glasserman, 2013). The risk neutral measure Q is used to express the derivative price. Equation 2.3.6
is an integral of the lognormal density of S(T ) with respect to time which can be evaluated in terms of
the standard normal cumulative distribution function (Glasserman, 2013). Besides, an American option
value at time t0 = 0 is defined by

V (S, 0) = Sup
t∈[0,T ]

EQ[e−rth(S(t))] (2.3.7)

where h(S(t)) = (K − S(t))+ is the non-negative intrinsic value at time t.

As previously reported, an American option is not straightforward to analyse as a European option
because the holder should decide on an optimal exercise strategy, when the discount pay-off gives the
best value. The reason is the no-arbitrage assumption. This means, we should find the optimal stopping
time of exercise and, estimate the present value at that time. For an unknown exercise boundary b∗,
the stopping time is defined by

τ = inf {t ≥ 0|S(t) ≤ b∗(t)}. (2.3.8)

The optimal time is the first in time, at which the option price becomes smaller than the pay-off. The
situation with American options is rather more complex than European options because at each time
step before expiration date, the holder of the option has the choice between exercising and holding on
to the contract. He should exercise immediately if the option is in the money. Thus, the present value
of the American option on optimal stopping time is given by

V (S, 0) = Sup
τ∈[0,T ]

EQ[e−rτhτ (Sτ )] (2.3.9)

where τ is the stopping time, Sτ is the price process stopped at t = τ , e−rτ is the discount factor
favourable for stopping time, and hτ the non-negative intrinsic value on the stopping time.

Therefore, the general practice is the estimation of the present option price. This means to hedge the
present value of the underlying asset in the future. This is the aim of our study, we will use the Least
Squares Monte Carlo method to estimate this value. Besides the Black-Scholes equation for American
options is an inequality given by

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂2S2 + rS
∂V

∂S
− rV ≤ 0 (2.3.10)

under the boundary conditions

V (S, T ) = max(K − S, 0) and V (S, t) ≥ max(K − S, 0)

Equation 2.3.10 under these conditions doesn’t have an analytic solution which will help the holder to
value the option and to make good decision. Also, to find the optimal time to exercise and get a good
pay-off, numerical methods like finite difference are used to solve 2.3.10 (Brandimarte, 2013).



3. Monte Carlo Method
In this Chapter, we are going to give in general the basic concepts behind Monte Carlo method and
Least Squares method.

3.1 Monte Carlo Method

The common idea behind the Monte Carlo method is to simulate a sample of something you are
interested in, and compute the mean to find the true value (Glasserman et al., 2004). Generally, the
price of derivatives is expressed as an expected value. Thereby, pricing derivatives lead to compute
expectation which can be written as multidimensional integrals. Besides, Monte Carlo methods are very
efficient for approximating high dimensional integrals, hence their importance in finance (Glasserman,
2013).

3.1.1 Principles. Consider u given by the integral

u =
∫ 1

0
f(x)dx. (3.1.1)

To estimate the integral u over the interval [0, 1], f(x) can be written as a product of an arbitrary
function g(x) and some probability density function q(x). Thus, u could be expressed as the expected
value u = E[g(x)] as

E[g(x)] =
∫ 1

0
g(x)q(x)

Suppose the probability density is generated by the sample xi, i = 1, . . . , n which are independent
and identically distributed (Barola, 2014), (Glasserman, 2013). Therefore, the expected value could be
estimated at n random points as

ûn = 1
n

n∑
i=1

g(xi). (3.1.2)

3.1.2 Convergence. If g(x) is integrable over an interval [0, 1] then the strong law of large numbers
ensures that the estimated value converges to the true value when the number of xi increases (Barola,
2014), (Glasserman, 2013). This means

ûn → u with probabily 1 as n→∞.

Also, if f is square integrable over the interval [0, 1] and the variance is define by

σ2 = 1
n− 1

n∑
i=1

(g(xi)− ûn)2 (3.1.3)

then the error û−u could be approximated by a normal distribution with mean 0 and standard deviation
σ√
n
. The convergence rate O

(
1√
n

)
is implied by the

√
n of standard deviation (Glasserman, 2013).

13
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3.2 Least Squares Method (LS)

The Least squares method (LS) consists of determining the best fit line of a data set by minimizing the
sum of squared errors. Let {(x1, y1), . . . , (xn, yn)} be a data set, where yi are the values of dependent
variables, and xi the independent variables, for i = 1, . . . , n. We expect to find linear relationships
between xi and yi. Let us group all the observations (xi, yi) into vector X,Y respectively and consider
the model function on the variables define as

Y = β0 + β1X + ei (3.2.1)

where ei represent the error of the relationship between X and Y and β0, β1 the parameters (Rao et al.,
2007). We can illustrate by Figure 3.1 below

Figure 3.1: Example Least squares method.

The main problem is to find the parameter values that best fits the data, that is, to find parameter
values that minimize a sum of squared errors (SSE).

SSE(β) =
n∑
i=1

e2
i = min

n∑
i=1

(Y − (β0 + β1X))2 (3.2.2)

with β a vector of β0, β1. Equation 3.2.2 can be written in this form 1

SSE(β) =
n∑
i=1

e2
i (β) = eT e. (3.2.3)

Expanding Equation 3.2.3 we get

eT e = (Y −Xβ)T (Y −Xβ)
= (Y TY − Y TXβ − βTXTY + βTXTXβ)
= (Y TY − 2βTXTY + βTXTXβ)

1Adopted from, https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf, Accessed on 4 Mai 2019

https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf
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where (Y TXβ)T = βTXTY is a vector. The minimum is determined by finding the gradient of SSE
with respect to β.

∇SSE(β) = (∇Y TY − 2∇βTXTY +∇βTXTXβ)
= 2(−XTY +XTXβ)

Setting ∇SSE(β) = 0 we obtain
XTXβ̂ −XTY = 0 . (3.2.4)

where β̂ is the estimated coefficient. Equation 3.2.4 will be used to compute the estimated coefficients
β̂0, β̂1 by

β̂ = (XTX)−1XTY. (3.2.5)

The LS is generalisable, instead of finding the best fit line, we can find the best fit given by any finite
linear combinations of specified functions. This means, given functions f1, . . . , fk, find values β1, . . . , βk
such that the linear combination 2 is the best approximation to the data.

Y = β0f0(x) + · · ·+ βkfk(x) =
k∑
j=0

βjfj(xi), i = 1, . . . , n. (3.2.6)

Suppose Fi,j = fj(xi), i = 1, . . . , n and j = 0, . . . , k. The coefficients β̂j are estimated using the
Equation 3.2.5 as

β̂j = (F TF )−1F TY. (3.2.7)

Now the Monte Carlo method and Least squares method have been presented, we need to describe the
methods of pricing American options. That is what we will do in the next Chapter.

2Adopted from, https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf, Accessed on 4 Mai 2019

https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf


4. Options Pricing Methods

4.1 Binomial Method

The Binomial model is a model to value options using a discrete time. The general formulation is based
upon the stock price process, in which, at any time, the stock price has a possibility to move up or down
(Brandimarte, 2013). The value of options is determined by its current price on discrete time.

Let S to be a current price at time t = 0 and we assume in the future the price could take only two
values Su or Sd with probability p and 1−p, where u, d represent “up” and “down” respectively. Thus,
the model can be generalized by a binomial tree as in Figure 4.1, where each node in the tree represents
a possible price of the asset at a given point in time.

Figure 4.1: A Binomial tree illustration.

The value of an option is computed at each node in time by beginning at each of the final nodes,
and moving backwards through the tree to the first node. The factors up, u, and down, d such that
u ≥ 1, 0 < d ≤ 1 are given by

u = eσ
√

∆t, d = e−σ
√

∆t

where σ is the volatility and ∆t is the time variation. The probability represents the risk-neutral defined
by

p = er∆t − d
u− d

.

Let us consider an American-style put option and let (i, t) be the point on the last layer. At the expiry

16
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date the intrinsic value at each final node is given by

fit = max {K − Sit, 0}

where Sit = Suidt−i is the underlying asset price on node i at time t and K the exercise price. The
option value at each node is found by

Ci,t−1 = e−r∆t (pfi,t + (1− p)fi+1,t) (4.1.1)

where e−r∆t is the discounted factor, p and 1− p are the probability to move up and down respectively,
and fi,t is the value of the option on node i at time t. The Ci,t which is the option’s value for the ith
node at time t is called the continuation value, i.e, the value to hold the option.

However, the holder has to solve an optimal stopping problem, wherewith at each time step, he must
observe the state and decide to exercise option if it is in the money.

Thus to do this, the holder will compared the immediate pay-off with the continuation value given in
Equation 4.1.1. If the pay-off is better than the continuation value then he could exercise, else he can
continue to wait for a better future value. The same argument will be repeated recursively for each
node from time t− 1 to t = 0 (Brandimarte, 2013). Therefore, the American option value is

fi,t = max
{
K − Si,t, e−r∆t (pfi+1,t+1 + (1− p)fi,t+1)

}
. (4.1.2)

4.2 Monte Carlo Simulation

The option price is expressed by the discounted expected value under risk neutral, Equation 2.3.9 and
the value can not be calculated explicitly. Thus the Monte Carlo methods are introduced to evaluate
the expected value of the pay-off function, which is a function of random variables (Glasserman et al.,
2004).

Indeed to evaluate the price of an American option with the Monte Carlo simulation introduced by Tilley
(1993), we firstly simulate the stock price path by using the solution of the geometric Brownian motion
equation define by

S(ti) = S(ti−1)e((r− 1
2σ

2)(ti−ti−1)+σ√ti−ti−1Zi) (4.2.1)

Figure 4.2 below shows the 1000 simulated stock price using Equation 4.2.1, with an initial stock price
S0 = 90, r = 0.06 and σ = 0.2.

Figure 4.2: Stock price simulated
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After, we evaluate the pay-off of each node of the simulated paths on the maturity. Secondly, reorder
the stock price paths from the minimum price to the maximum price and classify into group with the
equal number of stock, and compute the intrinsic value. Then for each group, estimate the continuation
value which is compared to all the intrinsic value of that group. Thirdly, at each node, we compute Vi,
for i from 1 to N , the maximum between the intrinsic value and the continuation value. Finally, the
option value will be the average V̂0 of the Vi. Following the process described above, the Monte Carlo
algorithm is

Algorithm 1 Monte Carlo Algorithm

Create random paths j = 1, . . . , N .
Divide the continuous time interval time [0, T ] in time steps t0, . . . , tM .
Simulate Sj(ti), i = 0, . . . ,M .
Reorder Sj(ti) form the minimum to the maximum and classify all paths into equal group.
Compute the pay-off g(Sj(ti)) = max(K − Sj , 0).
Compute the continuation value Cj(ti).
for j from 1 to N

V̂j = max(g(Sj), Cj)
end
The present value is the average of V̂j .

In the next section, we will develop the Least Squares Monte Carlo Method, to approximate the option
value. The method will be applied to a put option, where the current stock price is less than the exercise
price.

4.3 Least Squares Monte Carlo Method (LSMC)

4.3.1 Valuation framework of the LSMC methods. (Longstaff and Schwartz, 2001), (Clément et al.,
2002) Consider a filtration F defined such that F = {Ft; t ∈ [0, T ]} on the probability space where F
is a family of σ-algebras, Fs ⊂ Ft, s ≤ t that could be generated by the stock price processes.

We suppose [0, T ] is a finite time interval and the existence of an equivalence martingale measure
denoted by Q. The pay-off derivatives belong on L2(Ω,F , Q), which is the space of square-integrable
functions (Longstaff and Schwartz, 2001). We assume an adapted pay-off process h = (hi)i=0,...,T ,
which is a sequence of square integrals with real values defined by

E[h2
i ] =

∫
Ω
hi(ω)2dP (ω) <∞ , ω ∈ Ω. (4.3.1)

We assume a price process S = {St : t ∈ T} modelled as a GBM, see Equation 4.2.1. At maturity the
pay-off is equivalent to the option value. What is the price at time t, t < T? This can help the holder
to make a decision before exercising.

4.3.2 Description of Algorithm. In addition to the framework defined previously, we assume that
for all t < s ≤ T , the holder pursue an optimal strategy. However, it is better to exercise at time τ ,
Equation 2.3.8, and realize maximum profit from the options.

We need to approximate the option value by taking the interval of time to be sufficiently large, knowing
that the option could be exercised only at a discrete time (Longstaff and Schwartz, 2001). However, to
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get the optimal stopping time, the dynamic programming approach is used, which consist of dividing
the continuous interval into a set of finite time {t0, t1, . . . tM}, i.e, subintervals [ti, ti+1], i = 1, . . . ,M ,
with length dt = T

M . Note that the option cannot be exercised at time t0 and tM = T . For each time
ti decide if it is better to exercise than to hold on it.

Consider an ensemble of random paths j = 1, . . . , N , and time step ti, wich is discrete. The price
process Sj(ti) will be generated using Equation 4.2.1. Under the hypothesis that prior to the expiration
date, the option is not exercised. At the maturity the option value is equal to the pay-off.

Vj(T ) = h(Sj(T )). (4.3.2)

At each exercise date, except the first and the last, make a backward iteration in time by discounting
the price and estimating the expectation value, which is the worth of holding on to the option at time
ti. This expectation value at time ti is a conditional expectation value which uses the Markov property
on Sti . It is defined by

Cti = EQ[e−r∆tV (S(tt+1))|S(ti) = S] (4.3.3)

where ∆t = ti+1 − ti and e−r∆t represents the discount factor. Equation 4.3.3 is the value of keeping
alive an option instead of exercising. At the maturity date, the continuation value is null because the
option is no longer available.

To compute the continuation value is more complex. So, we can approximate it by using the least
squares method from time tM−1 to t1, (Longstaff and Schwartz, 2001). We know that the least squares
method is used to estimate the best possible coefficients for the approximation, by minimizing the mean
squared errors, Equation 3.2.5.

The method assumes that, with a set of simulated Markov chain sample paths, the estimated continua-
tion value can be expressed as a linear combination of basis functions from a countable measurable set.
This assumption is justified because of the conditional expectation to belong to L2, a square-integrable
functions space (Longstaff and Schwartz, 2001). Consider a set of realised paths Sj(ti), j = 1, . . . , N
that are in the money at time ti, i.e, h(Sj(ti)) > 0. The conditional expectation can be estimated as

Ĉti =
k∑

m=0
β̂mφm(Sj(ti)) (4.3.4)

where φm(Sj) = (φ1(Sj), φ2(Sj), . . . , φm(Sj)) is the orthogonal basis function which we will choose
and β̂0, . . . , β̂k are the estimated regression coefficients using Equation 3.2.7. Longstaff-Schwartz used
weighted Laguerre polynomials as basis functions (Longstaff and Schwartz, 2001). Throughout our
study, we choose to use Laguerre polynomials.

4.3.3 Basis function. Since Cti ∈ L2, this means L2 has a finite countable orthogonal basis in which all
elements can be written as a linear combination of a set of basis functions (Clément et al., 2002). There
are many orthogonal polynomials that can be used as basis functions such as simple polynomials, Hermite
polynomials, Chebychev polynomials, Legendre polynomials, Jacobi polynomials, weighted Laguerre and
Laguerre polynomials, which we choose as basis function.

4.3.4 Laguerre polynomials. 1 Let a Laguerre differential equation be given by

uv′′ + (1− u)v′ + λv = 0 (4.3.5)
1Adopted from, http://mathworld.wolfram.com/LaguerrePolynomial.html, 4 Mai 2019

http://mathworld.wolfram.com/LaguerrePolynomial.html
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where u ∈ [0, 1], λ > 0. Laguerre polynomials, Ln(u) are solutions of Equation 4.3.5 obtained by

Ln(u) =
n∑
k=0

(−1)k

k!

(
n
k

)
uk. (4.3.6)

The basis functions Lm with degree m take the form

L0(u) = 1
L1(u) = 1− u

L2(u) = 1
2(u2 − 4u+ 2)

L3(u) = 1
6(−u3 + 9u2 − 18u+ 6)

L4(u) = 1
24(u4 − 16u3 + 72u2 − 96u+ 24).

Therefore, the basis functions φm which are the Laguerre polynomials, are complete, linearly independent
and have the property of being mutually orthogonal on the interval [0,∞).

The coefficients β̂m are obtained by a least squares regression, Equation 3.2.5 between discounted
pay-off yj = e−r∆t h(Sj(ti)) and underlying assets xj = Sj(ti).

Consider the Laguerre polynomials as basis function, i.e, φm = Lm, where m is the degree of the
polynomials Lm. Then, β̂m are solution of Equation 3.2.7

(β̂0, . . . , β̂m) = (LTL)−1LT (y1, . . . , yN ) (4.3.7)

where L = Lm(xj), j = 1, . . . , N and m = 0, . . . , k.

Then, for each path j compare the values of immediate exercise h(Sj(ti)) with the estimated continu-
ation value. The greater of the two gives the value of the option. The early exercise decision is taken
by comparing the continuation value estimated with the pay-off as given below

V̂j,ti =
{

h(Sj(ti)) if h(Sj(ti)) > Ĉti(Sj,tj )
e−r∆th(Sj(ti+1)) if h(Sj(ti)) ≤ Ĉti(Sj,tj )

(4.3.8)

where h(Sj(ti)) is the pay-off option of the asset price at time ti. The term e−r∆th(Sj(ti+1)) in the
system 4.3.8 is the non-exercised value of holding on to the option.

The present price below is calculate using Monte Carlo methods 3.1.2, i.e, by taking the average over
all paths.

V̂0 = 1
N

N∑
j=1

e−r∆tV̂j,ti (4.3.9)

this is the expected value at present time. The Least Squares Monte Carlo (LSMC) algorithm is described
in Algorithm 2 below
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Algorithm 2 LSMC Algorithm

Create random paths j = 1, . . . , N .
Divide the continuous tilme interval time [0, T ] in time steps t0, . . . , tM .
Simulate Sj(ti), i = 0, . . . ,M .
Suppose Hj ←− h(Sj(tM )) for all j,
for t from tM−1 to t1 do

Find paths {j1, . . . , js} that are in th money, i.e, h(Sj(tM )) > 0
Let the paths γ ←− {j1, . . . , jm}
Let xj = Sj(t) and yi = e−∆tHj for j ∈ γ- paths
Use the least squares method on x, y to get the estimated coefficients β̂0, . . . , β̂m.
Approximate the continuation value Ĉ(Sj(t)) =

∑k
m=0 β̂mφm(Sj(ti)).

for j from 1 to N do
if j ∈ γ and h(Sj(tM )) > Ĉ(Sj(t))

Hj ←− h(Sj(ti))
else

Hj ←− e−r∆th(Sj(ti+1))
end

end
end
Use the average to approximate the option value
option price ←− 1

N

∑M
j=1 e

−r∆tHj .

4.3.5 Convergence. There is an estimated error when we approximate the expected continuation value,
Equation 4.3.3 by the Equation 4.3.4. In Clément et al. (2002), it is shown that at certain rates

lim
k→∞

Ĉ(S(t)) = C(S(t))

In Huang and Huang (2009), it is shown that the price estimated will converge to the true option value
if the approximated continuation value converges to the true expectation function. Also, Longstaff and
Schwartz (2001), showed that the Least Squares Monte Carlo algorithm is convergent with a sufficient
number of basis functions and a large number of simulation.

In the next Chapter, we will present the numerical results for all of the previous methods.



5. Numerical Results

5.1 Implementation

The implementation of the three options methods is done in Python. For the Least Squares Monte Carlo
method (LSMC), we use the three first Laguerre polynomials as basis functions in Equation 4.3.6 to
approximate the continuation value and the stock price simulated using a geometric Brownian motion
in Equation 4.2.1.

5.2 Results

The table below shows the values of American put option using the Binomial method, Monte Carlo
method (MC) and LSMC. The prices are obtain for different current stocks with exercise price K = 100,
the stock volatility at 20% and the risk free interest rate at 6% in one year, which is the expiration
date T . The LSMC and MC solutions are obtained for 1000 simulations and 252 exercise dates. While
Binomial solutions are obtained for a tree with 252 steps.

Stock price Binomial MC LSMC
60 40.00000000 39.88360011 39.88727041
70 30.00000000 29.85799861 29.86700293
80 20.00000000 19.85839718 19.87487220
90 11.21709288 9.89989889 11.10481464
100 5.79819565 1.04688985 5.69180536
110 2.78359189 0.00031550 2.60726455
120 1.24944663 0.00000000 1.06033163
130 0.52981984 0.00000000 0.39897257

Table 5.1: American put option prices.

Figure 5.1: Plot American put option prices.
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Now let’s compare the running time (in second) for Monte Carlo and Least Squares Monte Carlo method.

Number of simulation MC LSMC
10 0.004 0.021
100 0.017 0.023
1000 0.043 0.036
10000 0.414 0.182
100000 3.933 1.774

Table 5.2: Table of Execution Time.

5.2.1 Approximation Error. Here, we use the relative error with respect to Binomial method solution
to compare the Monte Carlo method and the Least Squares Monte Carlo method. The errors are given
in the table below:

Stock Price MC LSMC
60 0.29099 0.28182
70 0.47334 0.44332
80 0.62563 0.70801
90 11.74273 1.00095
100 81.94455 1.83489
110 99.98866 6.33452
120 100.0 15.13590
130 100.0 24.69655

Table 5.3: Table of Errors.

5.2.2 Discussion. From Figure 5.1, we can see that the LSMC values are close to Binomial method.
From Table 5.2, it is clear that LSMC method is faster than the MC method. Moreover, from Table 5.3
we can see that LSMC method is more accurate than MC.



6. Conclusion
In this study, we presented the Least Square Monte Carlo method which is a combination of the least
squares and the Monte Carlo method for pricing American put options. We used the Least Squares
method to approximate the continuation value.

Moreover, the Binomial method, the Monte Carlo simulation and Least Squares Monte Carlo method
(LSMC) were used to find the price of an American option. Numerical experiments have shown that
the LSMC method is faster and more accurate than the Monte Carlo method.

For future work, we plan to use the Artificial Neural Network method (ANNs), which is machine learning
technique, to price American options and compare it to the Least Squares Monte Carlo method.
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